The Off-Plane Option for the Reflection Grating Spectrometer

Randy McEntaffer
Webster Cash, Steve Osterman,
Ann Shipley, Brian Gleeson

University of Colorado

In-plane Mount

Off-plane Mount

$$\sin \mathbf{a} + \sin \mathbf{b} = \frac{n\mathbf{I}}{d}$$

$$\sin \mathbf{a} + \sin \mathbf{b} = \frac{n\mathbf{l}}{d\sin \mathbf{g}}$$

Radial Groove Gratings

Off-plane Grating Module Locations on Envelope

Off-plane Tradeoffs

PRO

- Higher Throughput
- Higher Resolution
- Better Packing Geometry
- Looser Alignment Tolerances

Higher Groove Density

Raytracing – Arc of Diffraction

Raytrace – 35 & 35.028Å

University of Co

Effective Area

Off-Plane Program

- Optical Design Projected Performance
 - Looks Attractive
- ? Engineering Requirements
 - Has Significant Advantages
- ? Grating Suppliers
 - Several Possible Suppliers
 - Holographic Techniques Look Better Than Mechanical
- ? Grating Efficiency
 - Test Gratings at Colorado Now
- ? Resolution Demonstration
 - Scheduled this Summer at Colorado
- ? TRL Development
 - Plan to Achieve TRL 6

Grating Test Facility at CU

Used for COS and FUSE

• Jobin-Yvon, radial grooves, 4246 g/mm, unblazed

@ ? = 2° AbsoluteEfficiency:strongest order = 13%

Sum orders = 29%

• Jobin-Yvon, radial grooves, 4246 g/mm, blazed 13°

@ ? = 2° Absolute Efficiency:
 strongest order = 6.4%
 Sum orders = 11%
 30% (w/ scatter)

May 7, 2003

[?] MIT, parallel rulings, 5000 g/mm, blazed 7°

	?	Abs. Eff.	Abs. Eff.	Groove
	(degrees)	one order	Sum orders	Eff.*
Mg-K	1.35	25%	38%	54%
(1.25 keV)	1.5	28%	40%	59%
	2	9%	27%	48%
Cu-L	1.5	21%	24%**	35%**
(0.93 keV)	2	18%	30%	45%

Groove eff. = Abs. eff./Reflectivity (a.k.a. Relative eff.)

Constallation-X

Conclusion

- Off-plane can significantly improve performance of Constellation-X RGS
- Gratings can be built to required efficiency and scatter specifications
- ? Resolution tests to be conducted this summer